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Abstract—Within the context of unconstrained, finite elasticity, exact solutions will be obtained for
a number of plane stress boundary-value problems. The inflation and azimuthal shearing of cylinders
of the so-called Varga material will be considered. Additionally, a simple, static interpretation of
the strong ellipticity condition will be given for these materials.

I. INTRODUCTION

Controllable deformations are deformations that can be sustained by an elastic material
independently of the specific form of the material response (the strain energy function), i.e.
controllable deformations can be supported by surface tractions alone. Ericksen (1955)
has shown that homogeneous deformations are the only controllable deformations for
compressible, isotropic, elastic materials. However, this result does not preclude the possi-
bility of non-homogeneous controllable deformations for specific compressible materials.
Noteworthy in this regard are the solutions for harmonic materials (John, 1960) obtained
by Ogden (1984), Ogden and Isherwood (1978), Abeyaratne and Horgan (1984) and Jafari
et al. (1984).

Controllable deformations for other compressible materials have been investigated.
Materials of type III were introduced by Carroll (1988) and independently by Haughton
(1987). Materials of type III have a strain energy function of the form

W= ci(ii=3)+c2(i2—3) +h(iy), (M

where the i, are the principal invariants of the stretch tensor, the ¢, are constants and # is
an arbitrary function. Carroll (1988) has shown that both spherical expansion or com-
paction and cylindrical expansion or compaction, accompanied by an axial stretch, are
controllable deformations for materials of type III. In a recent paper, Carroll and Murphy
(1994) have shown that azimuthal shearing deformation is controllable for materials of
type III, amongst others.

Boundary-value problems associated with such controllable deformations have also
been studied in the literature. For cylindrical bodies of compressible materials, plane strain
conditions are often assumed [see, for example, Jafari ez al. (1984) and Carroll and Murphy
(1994)]. Within this context, exact solutions to boundary-value problems can be obtained.
The corresponding plane stress boundary-value problems cannot usually be solved exactly
and, in this situation, the plane stress conditions are typically satisfied in a resultant sense.

In this paper, we will solve a number of plane stress boundary-value problems in an
exact manner for a restricted (yet still quite general) material of type III. This material has
a form of the strain energy function equal to (1) above with c, set equal to zero. This is the
Varga material introduced by Haughton (1987). Azimuthal shearing and cylindrical
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inflation of this material yield constant out-of-plane stress components. Consequently the
plane stress problem can be solved exactly.

There is no obvious reason why the strain energy function of a real material should be
of the special form corresponding to materials of type III. A number of constitutive
restrictions on the form of the strain energy function for materials of type III will first be
considered after the preliminaries. A number of plane stress boundary-value problems will
then be examined. These problems will involve cylindrical inflation and azimuthal shearing.

2. SPECIAL STRAIN ENERGY FUNCTIONS

The response of an elastic material is completely described by the form of its strain
energy function:

W = W(F), 2
where F is the deformation gradient tensor satisfying
detF > 0. (3)
F has the polar decompositions
F = RU = VR, @

where the rotation R is a proper orthogonal tensor and the stretch tensors U, V are positive
definite and symmetric.
Invariance under superposed rigid body motions leads to:

W= Ww(). €
The assumption of material isotropy further leads to
W = W(i,i,is), (6)
where i,, i,, and i, are the usual invariants of the stretch tensor U (and of V, since U, V
have identical invariants).

The stress response equations

Pzg, T =i; 'PF’, @)

where P, T are the Piola and Cauchy stress tensors, then lead to a representation

oW ow ow L OW
—i7 ' V2, 8
T= 531+l <51 +1i, 12>V iy o ®)
The Cayley—Hamilton theorem
Vi V2 +i,V—i;1 =0 ®)

may be used to express V2 as a linear combination of 1, V, and V™. Substitution for v?
in (8) leads to the alternative representation
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ow oW
i, Y i Vi Dy Dy, 10
T=i (1261‘2 +'3ai3)1+” iV (10)

Carroll (1988) introduced the so-called materials of type III whose strain energy
function has the form

W =c,(i, —3)+c,(i,—3) +h(is), (1)

where ¢, ¢, are constants and 4 is a twice continuously differentiable function. Substitution
of (11) into the stress—strain relation (10) gives

T =ciis 'VAeo(tr V 11—V )+ A (i5)1. (12)

The conditions that the strain energy and the stress vanish in the reference configuration
yield

A1) =0, K1) = —(c,+2c5). (13)

It is to be expected that a number of inequalities will have to be imposed on the arbitrary
function A(i;) in order that the behavior of the solutions of the equilibrium equations
conforms with physical intuition. Some such constitutive restrictions will be considered in
the next section.

3. RESTRICTIONS ON THE STRAIN ENERGY FUNCTION

In the linear theory the elastic response is not arbitrary: the strain energy function
must be positive definite in the (infinitesimal) strains to ensure physically realistic behavior.
Since the large deformation theory includes the linear theory as a limiting case, one necessary
restriction on the strain energy function is immediately obvious: on restriction to infini-
tesimal deformations, the shear and bulk moduli should be positive. Now, on restriction to
infinitesimal deformations, the strain energy function of materials of type III reduces to the
strain energy function of the linear theory if and only if

ci1tey=2u

h'(1) = 2424, (14)

where 4 and p are the Lamé constants of the material satisfying the inequalities
3442 >0, pu>0. (15)
In the context of large deformations, one approach to ensure physically realistic
response is through static considerations (Truesdell and Noll, 1965). An elastic material

satisfies the Baker—Ericksen (BE) inequalities if and only if

(ti—2)(Ai—4) >0, if A # 4, (16)

where 1,, A; are the principal Cauchy stresses and the principal stretches, respectively. An
elastic material satisfies the strong tension—extension (STE) inequalities if and only if

at,
0—):>0’ i=1,2,3 (no sum) an

everywhere. The physical motivation behind these inequalities is to be found in Truesdell
and Noll (1965).
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We now consider the restrictions placed on the strain energy function of materials of
type I1I by the above two inequalities. For materials of type III, the principal Cauchy
stresses can be easily obtained from (11)

L. c 1 | . .
t,=h(l3)+;7.+6‘2 —+ |, i#FjFk#I (18)

L A

where i; = A, 4,45. Substitution of (18) into (16) shows that the BE inequalities are satisfied
if and only if

C'|+C2;Lk>0, k= 1,2,3. (19)
The inequalities (19) are equivalent to the following condition :
eitherc, 20, ¢, >0 or ¢,>0, ¢, =0. (20)

Substitution of (18) into (17) shows that for materials of type I1I, the STE inequalities are
equivalent to

h'(i3) > 0. @1

Another type of constitutive restriction that has received considerable attention in the
literature is the strong ellipticity (SE) condition [see, for example, Ogden (1984), Truesdell
and Noll (1965), Knowles and Sternberg (1975, 1977)]. In the formulation due to Ogden
(1970), an elastic material satisfies the SE condition if and only if

Q,;(mmm; > 0 (22)

for arbitrary, non-zero vectors m, n and where

ot
Ou = 011 1+/12_)2/1% %+ /12 /11”3, etc.
0t t
0, = (/iz(%l + /l; /12/1 )”1”2, etc. (23)
2

Substitution of (18) into (23), permutation of the indices in (23) and some algebra
yields the following form of the SE condition for materials of type I1I

Aieytc

Tt s (Anms— /13”3”12)2

i%h"(h)(n,ml +n2m2+n3m3)2+

12C2+C1 /“3CZ+CI
Avymy— Asnam) + —
/L]+/Lz ( LA RAL] 3ft3 1) }u +A

(llnlmz—ﬂvznzml)z > 0. (24)

From Truesdell and Noll (1965), we see that, for isotropic materials, both the BE and STE
inequalities are necessary for strong ellipticity to hold. From (19), (21) and (24), we conclude
that the BE and STE inequalities are also sufficient for the SE condition to be satisfied for
materials of type III. This is a simple, static interpretation of the SE condition. We note
that this interpretation is not valid in general. This can easily be seen from consideration
of the special material introduced in Knowles and Sternberg (1975). In what follows, we
will assume that the SE condition is satisfied.
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4. AZIMUTHAL SHEAR

We consider the problem in which the inner radius of an annulus is held fixed while
the outer surface is twisted through an angle. The hollow cylinder has original inner radius
R, original outer radius R, and original length L. Using a semi-inverse approach, Carroll
and Murphy (1994) found that the following controllable deformation describes such
azimuthal shearing for materials of type III:

A
r?=aR?>+B, 0=®+sin“[ ]—i-B, z=AZ, (25)
B

R/aR*+

where a, 8, A, and B are constants and where (R, ©®, Z) and (r, 8, z) are the cylindrical
coordinates of a particle before and after deformation, respectively.

We will now consider two associated boundary-value problems. The first will be the
obvious displacement boundary-value problem where the outer surface is twisted through
a given angle Q at fixed radius. The second problem considered will be where a moment M
is applied to the otherwise traction-free outer surface.

In both boundary-value problems we will require the planar ends of the cylinder to be
stress free, i.e. we will consider plane stress problems. From (11) and (25) we see that

Trz = TGZ = 0 (26)
and that
20R?
T, =% 4o, [ aR +5 } + I (Jal) @7
« a/R*(aR*+p)—A4

Setting ¢, = 0, the T,, component of Cauchy stress becomes constant
C ,
T, = " +h (Aa). (28)

The interesting consequence of (28) is that we can satisfy the conditions of plane stress
exactly for materials of type III with ¢, = 0 (the so-called Varga materials), rather than in
the usual resultant (or St Venant) sense.

Thus, the deformation describing plane stress, azimuthal shearing of the Varga material
is given by (25) where 1 and « are related by

h(Ay) = — % , (29)

where, from (14), ¢, = 2u. We now consider the associated boundary-value problems.

5. DISPLACEMENT BOUNDARY-VALUE PROBLEM

We consider the problem in which the inner radius of an annulus is held fixed while
the outer surface is twisted clockwise through an angle Q at fixed radius. The boundary
conditions therefore are

ri=FfFR)=R,, =0 on R=R, (30)
rn=HR)=R, 6=0-Q on R=R, G

together with the plane stress condition (29).
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The solution for a, f, 4, and B proceeds exactly as in Carroll and Murphy (1994) and
we obtain the following results

=1, =0
4= RiR%sinQ
" (R}+R3—2R?R%cosQV?’
i A
B= —sin”! |:RJ (32)
Since a = 1, (29) becomes
W) = —2u. (33)

But from (13) and (14) we already have
W)= —-2u

and since A”(4) > 0, by the STE inequalities, we immediately see that (33) has the unique
solution

A=1

Thus, for this special case we see that the plane strain and the plane stress problems
are equivalent. In particular, the relationship between applied torque and angular dis-
placement for the plane stress problem is the same as that given in Carroll and Murphy
(1994) where the corresponding plane strain problem was considered. Thus, letting M
denote the moment necessary to twist the outer cylindrical surface in a clockwise direction
relative to the fixed inner surface, the following relationship holds

5 .
y°sin )

M, = 34
" (149t =2y cos Q) VP’ (34)

where M, is the non-dimensionalized moment defined by

M
M, = AnuR:L (33)
and
R2

V=g (36)

We note that (34) is valid for all materials of type III. Finally, letting y> — oo in (34), which
corresponds to the azimuthal shearing of an infinite medium of type III with a rigid
cylindrical insert, we obtain

M, =sinQ. (37

6. TRACTION BOUNDARY-VALUE PROBLEM

We next consider the problem in which the inner radius of an annulus is held fixed
while a clockwise moment M is applied to the otherwise traction-free outer surface. The
boundary conditions are
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ri=FR)=R, 0=© on R=R, (38)
Trr = 09 on R= R2 (39)
M
= — — = 4
T 2nriAL’ R 40

together with the plane stress condition (34).
We first note that (38) yields:

B = Ri(1—2)

B= —sin”! I:%:I (41)

We now consider the stress boundary conditions. From (12) (with ¢, = 0) and (25), we see
that the stress components 7,, and T, are given by

VR @R 4+ §)—4?

T, = i (Aa)+2u 2GR+ B) 42)
using (34) and
Ty~ 2 (44
using ¢, = 2u as before.
Application of (40) yields
A
using the same notation as before. Applying (39) we obtain
§ =70 =D+ DM} )
a(y*—1+1
where
2
as before.

To determine «, we use the plane stress condition (29) and equation (46). We seek
solutions a > 0 of the equation

» <a2w(a(y2—1)+ 1)—M3> _

a(y’ =1 +1 o 7

Now let Q denote the relative angular displacement of the two cylindrical surfaces. Then,
using (41), we have

SAS 31:11-H
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A A
Q = sin_ 1 T _qn ! e
sin I:RJ sin [Rzrz]’ (48)

where

ry=JaR3+p = /a(R3—~ R} +R.

Therefore, we get from (48)

Rl 2\’ R
Q=sin""'|M, T S M} - R Mn(l—M,f)‘“), (49)

ot 2F2
where

R 1
Ry fapP-1)+1

and o« = &(M,) is determined from (47).

Therefore, we conclude from the above analysis that the solution of the given boundary-
value problem is dependent on the form of the arbitrary function A(i;). In particular, the
relationship between applied torque and angular displacement is dependent on the form of
h(i,) through (47) and (50), in contrast to the displacement boundary-value problem.

However, for the special case of a rigid cylinder embedded in an infinite medium of
the Varga material, we can obtain a relationship between applied torque and angular
displacement which is independent of the form of the strain energy function. Letting y* —
oo in (47), we obtain the following equation which determines « for this special case

(50)

Ky = — = (51)

With o determined from (51) [for specified form of 4(i5)], 4 is determined by
A =qal? (52)

which equation is obtained on letting 72 — oo in (46). On consideration of (50), we immedi-
ately see that

2
fim X

}'2—+00 r2R2

= 0. (53)

Consequently, as y* — oo, we obtain, from (49), the familiar result

M, =sinQ. (54)
An examination of (49) reveals that the range of applied moment M must be bounded to
ensure physically realistic behavior. Specifically, we require as a necessary condition for
physically realistic behavior that M, satisfy

0< M, <1. (55)

A similar restriction on the range of the angle of twist in the displacement boundary-value
problem can be obtained. Details can be found in Carroll and Murphy (1994).
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7. CYLINDRICAL INFLATION

We again consider a hollow cylinder of type III material, with the same dimensions as
before. Carroll (1988) has shown that the controllable deformation

o

A

rt=

R*+B, 0=0, z=.Z, (56)

where «, B, and A are constants and where (R, ®, Z) and (r, 6, z) are the cylindrical
coordinates of a particle before and after deformation, describes cylindrical inflation or
compaction accompanied by an axial stretch for materials of type III.

We will consider the associated plane stress problem. Now from (12) and (56) we see
that

T,.=T, =0 (57)
and that
T.=c }f; Y (g % + f) R (). (58)
Setting ¢, = 0, we obtain
T.=c, g +h (o). (59)

This stress component is constant and we can therefore again satisfy the plane stress
conditions exactly rather than in the resultant sense. We conclude from (59) that the plane
stress conditions are satisfied exactly if and only if

A
W (@) +2u” =0, (60)

where ¢, = 2u from (14).
Assume that both internal and external pressure are exerted on the curved surfaces of
the cylinder. Then
T,=-p, onR=R,
T,=—p,, onR=R,. (61)

Thus for the Varga material, we get from (12) and (56) that
T.,=2 R +h(a) 62
rr = 'ulr & ( )
and therefore equations (61) become

R, ,
2y K@ = —p,
&

Ar2 +h (fX) = —Pos (63)

2p

where r, = 7#(R,), r, = F/(R;). Now from the first equation in (56) we obtain the identity
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(G-

where

2

"IY =

2
2
R

If we solve (63) for R,/r, and R,/r, and substitute into (64) we obtain

y? 1
_ 5T o 5 = ia o 1 N 65
GAH@) (Gt HEy? ~ 0D (63)
where
I @
pa_zﬂ’ pi“zus H(OC)— 2# . (66)

Now if we eliminate 4 between (60) and (65) we obtain

o
2

i _ y B
(pi+H@)® (P, +H@w)®

aH@)(y*—1). (67)

We require specification of the form of the arbitrary function A(i;) in order to obtain a
solution to the given boundary-value problem. Assuming that /(i;) has been specified, we
obtain o > 0 from (67), 4 > 0 from (60) and f from (63).

Some simplification of the above equations occurs for the case of an infinite sheet with
a circular hole. This corresponds to the limiting case of R, tending to infinity. Taking the
required limits in (67), we obtain the following equation to determine «

1
2 e
o H(x) + G H@) - 0, (68)

where p, is now the applied pressure at infinity. The second of (63) now becomes

1

Substitution for H(x) from (60) yields the equation to determine A, once o has been
determined from (68)

1 A

G0 0 —Po- (70)

B is again determined from the first equation of (63).
We finally note that for internal pressure only, that is for j, equal to 0, the above
equations simplify further. Equation (68) becomes

2 HY@)+1 =0 (71)

and (70) becomes
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A=a', (72)

We emphasize that this solution is exact although we require a specification of the arbitrary
function A(i5) in order to obtain a solution to the given boundary-value problem. Finally,
we notice that the solutions o, A to (71) and (72) are independent of the pressure on the
hole, p;. Since from the first equation of (63)

R, 1
"= H@ @)

we conclude that for physically realistic response, g; must satisfy
0<p<—H 74)

and that for p, satisfying (74), we have

> 0. (75)
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